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A fundamental task in developmental biology is to identify the mechanisms which drive morphogenesis.
Traditionally pattern formation have been modeled mainly using Turing-type mechanisms, where complex
patterns arise by symmetry breaking. However, there is a growing experimental evidence that the influence of
signals derived from surrounding tissues can contribute to the patterning processes. In this paper, we show that
the interplay between the shape of surrounding tissues and a hierarchically organized gene regulatory network
can be able to induce stable complex patterns. The rise of these patterns depends strongly on the shape of the
surrounding tissues.
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I. INTRODUCTION

Developmental biology research has identified several or-
ganizing principles that contribute in an orchestrated manner
to embryogenesis and organogenesis. Recently, Salazar-
Ciudad et al. �1� have proposed a theoretical framework that
classifies developmental mechanisms into three main catego-
ries: cell autonomous, inductive, and morphogenetics. Cell
autonomous development mechanisms are mainly based on
cell division that occurs coupled to internal dynamics rather
than to environmental signals �e.g., somitogenesis �2��. In-
ductive mechanisms are those in which the cells secrete dif-
fusible molecules, as signaling, which induce changes in the
states of other cells �3�. Thus, inductive patterns are deter-
mined by the spatial relationships of different cell states
�phenotypes�. Last but not least, morphogenetic-based
mechanisms are those in which the pattern is a consequence
of mechanical cell interactions �apoptosis, cell migration,
differential adhesion, etc.� rather than cell states �see, e.g.,
�4–6��.

Since 1952, when Alan Turing showed a pathway to pat-
tern formation without pre-patterns for its initiation �7�, the
literature on modeling inductive pattern formation has been
mainly based on the reaction-diffusion theory of morphogens
�see, for example, �8,9��. Morphogens are signaling mol-
ecules that can induce or not different cell states depending
on the morphogen concentration �10,11�. Typically, a mor-
phogen is produced by a distinct localized set of cells that
diffuse to surrounding tissues generating a graded distribu-
tion across a field of cells. Thus the local concentration of
this molecule would induce the state of nearby cells in a
position-dependent manner. The Turing-type inductive
mechanism can be thought of as a competition between ac-
tivation by a slow diffusing chemical and inhibition by a
faster chemical, and has been largely applied to explain bio-

logical pattern formation �e.g., �8��. However, it is important
to keep in mind that biological strategies of patterning can be
very different from the Turing-type mechanisms where dif-
fusion plays a key role in the symmetry-breaking. For ex-
ample, the formation of the characteristic periodic striped
pattern of the pair-rule expression in Drosophila �12,13� fol-
lows a strategy based on a hierarchical regulatory gene net-
work embedded in morphogenic fields. In this example, each
stripe results almost independently of each other as a conse-
quence of the positional information provided by the spatial
distribution of proteins encoded in the gap genes group,
which in turn follow the positional cue provided by maternal
factors. We define hierarchical gene regulatory networks as
those in which the production rates of the proteins associated
with the higher-level genes are not affected by the gene prod-
uct of the lower-level genes, whose expression is regulated
by the higher level genes. Hereafter, we will refer to the
strategy based on a hierarchically regulatory gene network as
hierarchic-type strategy. This type of strategy differs from
the Turing-type in that the diffusion constants associated
with the morphogens are not required to be different for the
pattern formation. However, the extent to which the patterns
under development are Turing-type or hierarchic-type re-
mains an unsolved issue �14–16�.

In general, inductive mechanisms act under the influence
of tissues whose form is subjected to morphogenetics mecha-
nisms. On the other hand, molecular signaling underlying
inductive patterns can activate or not, depending on its local
concentration, morphogenetics mechanisms which in turn act
over the inductive mechanisms themselves. Thus, the shape
of organ and tissues could often be the outcome of the
inductive-morphogenetics mechanisms interacting recipro-
cally in a continuous and concerted manner. Salazar-Ciudad
et al. named this synergetic activity morphodynamic interac-
tion �1,17�. Consequently, when inductive and morphoge-
netic mechanisms interact, the space in which diffusion takes
place changes over time, affecting the inductive patterning
process. Depending on the temporal order in which each
mechanism acts, or the typical timing involved in each
mechanism, it is possible in some cases to consider a one-
way interaction. In this sense, Salazar-Ciudad et al. refer to
morphostatic interaction, when morphogenetics mechanisms
act after the inductive pattern formation �1�. In the same
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spirit, one could approximate by a one-way interaction those
cases in which the typical morphogenetics timings are larger
than the typical time of the inductive pattern formation.
Hereafter, we denoted this approximation as morphostatic
approximation.

In most cases, the shape of endogenous morphogen gra-
dients is rarely known. Only a few systems have been stud-
ied intensively to identify the appropriate morphogens and
their associated spatial distribution. Furthermore, the regula-
tory gene networks, as well as the signaling pathway in-
volved in developmental programs, are not, in most cases,
quantitatively characterized. For these reasons, we use math-
ematical modeling to explore the hierarchic-type inductive
mechanisms as a putative generic mechanisms for complex
pattern formation rather than modeling a particular develop-
ing biological system. However, there exists much experi-
mental evidence for our modeling. For example, in Xenopus
embryos, it has been established that bone morphogenetic
protein controls neural and epidermal fates in the vertebrate
ectoderm, under the control of antagonists secreted by the
organizer region of the mesoderm �18�. Also wingless,
hedgehog, and decapentaplegic proteins in the Drosophila
wing imaginal disks are well studied examples of secreted
signaling proteins �19�. Furthermore, BMP4 evokes distinct
responses in ectodermal cells at high and low concentrations,
in a pattern that is consistent with the positions of the corre-
sponding cell types in the Xenopus embryo �20�. Recently,
Miyazaki et al. showed that the morphogenesis of a mouse
embryonic submandibular gland depends �SMG� on intraepi-
thelial signaling mediated by an epidermal growth factor, and
on the neuregulin-1 protein, which is exclusively found in
the mesenchyme. Their result suggests that both
mesenchyme-derived molecules and epithelium-derived mol-
ecules drive the SMG morphogenesis �21�.

Modeling pattern formation is a current research topic in
developmental biology. Recently, several studies have con-
sidered the effects of curvature and growth constraint on pat-
tern formation �22–24�. There is also literature considering
particular developing systems such as stripe formation in
Pomacanthus including cell migration �9�, mammalian teeth
using the morphodynamic approach �25�, the segment polar-
ity network in Drosophila �3�, and limb bud patterning in-
cluding growth �26�. Most of these works have used Turing-
type mechanisms for modeling. In this paper, we focus on
some aspects of hierarchic-type inductive mechanisms
within the morphostatic approximation. In particular, we will
explore, by means of computational simulations, the ability
of a small gene regulatory network to form complex patterns
by the influence of different shapes of morphogen sources.
The gene network studied is able to generate stable complex
patterns depending on the shape of the surrounding morpho-
gen sources.

II. METHODS

A. Shaping morphogen gradients

Although pattern formation is indeed induced by graded
activation of a signaling pathway, several factors are in-
volved in the distribution of a morphogen in a developmental

field �27�. The mechanisms involved in gradient shaping in-
clude passive diffusion in the extracellular matrix �28�, re-
peated rounds of endocytosis and exocytosis �29�, cytonemes
�30�, argosomes �31�, and a recently proposed mechanism by
mRNA decay in growing structures �32�. It is beyond the
scope of this paper to model the shape gradient genesis. We
will adopt the simple localized source-dispersed sink models,
where the shape of a morphogen gradient is dictated by the
rate of diffusion away from the site of synthesis, along with
the rate degradation. The gradient can be broadened by either
increasing the diffusion rate or decreasing the degradation
rate, while the opposite effects can produce a much steeper
gradient. In particular, the diffusive substances are homoge-
neously secreted by the fixed boundary of surrounding tis-
sues. Thus, we also consider that these substances are de-
graded over all developmental fields. We can represent these
processes by the following equations:

ȧ = Da�
2a − �aa ,

ḣ = Dh�
2h − �hh , �1�

where a �h� denotes the activator �inhibitor� concentration
that is released by the tissue I �tissue II� and degraded over
the domain at rate �a ��h�. Figure 1 shows a schematic rep-
resentation of surrounding tissues, boundaries �bottom
panel�, and the concentration profiles a and h over a horizon-
tal segment in the middle of a semielliptic domain �top
panel�.

FIG. 1. A schematic representation of surrounding tissues,
boundaries �bottom�, and the concentration profile of activator a
and inhibitor h over a horizontal segment in the middle of a semiel-
liptic domain �top�.
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In order to evidence the key role of geometrical con-
straints in the patterning process, the overall processes were
implemented on both semielliptical and semicircular do-
mains. Figure 2 depicts the concentration fields of activators
�A� and inhibitors �B� in a portion of the semielliptical do-
main. For the semicircular domain, the concentration fields
of activators and inhibitors are shown in �A� and �B�, respec-
tively, and they were obtained using the parameters in Table
I. Despite the small differences between the top and bottom
morphogen distributions, they are sufficient to induce com-
pletely different patterns of expression of regulated genes, as
we will show later.

B. Gene network model for development

Our gene network model is based on a well-known bio-
logical dynamics of development: the Drosophila segmenta-

tion. This is an example in which biological strategies of
patterning seem to follow a hierarchically organized building
strategy defined by small modular regulatory gene networks.
In this case, a concentration-dependent transcriptional acti-
vator Bicoid �Bcd� starts a regulatory cascade activating the
expression of hunchback, other gap genes �Kruppel, knirps,
giant, tailless�, which are mutually repressed, and the pair-
rule genes �e.g., eve-skipped�. We have constructed a small
regulatory network �see Fig. 3� whose topology mimics the
Drosophila segmentation network in many aspects. For ex-
ample, the higher-level gene U1 corresponds to a
concentration-dependent transcriptional activator, while U1−3
form the mutual inhibitor subnetwork �like the gap genes�,
and finally, the lower-level gene U5 corresponds to the net-
work output �like the pair-rule genes�. This network is able to
produce boundary-dependent complex patterns from an ini-
tially homogeneous distribution. Note that this result is not
specific to the particular network topology used in the model.
We also verify that modified versions of this network also
produce patterns in a boundary shape manner.

Our mathematical model considers several biochemical
and biophysical processes currently present in many biologi-
cal descriptions, including diffusion, degradation, noise, and
of course, regulatory activation and/or repression of gene
expressions. The last one forms two negative feedback loops,
which seem to be essential control mechanisms in develop-
mental networks �16�. We will describe regulatory activation
sigmoidal functions s+�x ,� ,n�=xn / �xn+�n�. If the concentra-
tion of the activator factor is below the threshold �, the gene
is poorly expressed, whereas above this threshold its expres-
sion grows until saturation. The regulatory inhibition will be
represented by s−=�n / �xn+�n��1−s+. Sigmoidal functions,
in particular Hill functions, have been used in a variety of
genetic regulatory models �3,33–35�. In general, there are

FIG. 2. 3D plots of the concentration of a, secreted by the tissue
I ��a� and �c��, and h ��b� and �d��, which is secreted by the tissue II,
obtained from Eqs. �1�, after 5000 time steps. The panels �a� and �b�
correspond to the elliptical geometry, and panels �c� and �d� corre-
spond to the circular geometry.

TABLE I. Parameter values for diffusion, degradation, and geo-
metrical constraints used to obtain the input profiles 1 and 2. These
profiles differ in the degradation values �a and �h, which were
reduced to 0.5�10−3 to generate the input profile 2.

Parameters Values Parameters Values

di 0.01 Semiellipse

�i �i�5� 0.20 internal semimajor axis 40.00

�5 0.35 internal semiminor axis 14.14

Da 0.04 external semimajor axis 86.60

Dh 0.04 external semiminor axis 31.62

�a 1.0�10−3 Semicircular

�h 1.0�10−3 internal radius 24.70

�t 1.00 external radius 51.96

�x 0.40

FIG. 3. Schematic diagram of the network. Circles indicate
genes, blunt-end arrows denote inhibition, and pointed arrows de-
note activation. Regulatory activation is represented by arrows and
regulatory inhibition by small perpendicular edges, as usually. This
network presents two negative feedback loops, one where U2 inhib-
its U3 that inhibits U4 that inhibits U2, and another which is formed
by U4 that inhibits U3 that inhibits U2 that inhibits U4. There is
also an autoinhibitory loop acting over U1 and an autocatalytic loop
acting over U2.
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several regulatory interactions acting over a single gene, and
in these cases the resulting expression rates will be described
by the product of sigmoidal functions corresponding to each
interaction �36�, rather than to the additive formulation used
in �3,33,34�. For the sake of simplicity, our model does not
consider other factors such as growth, cell division, post-
transcriptional regulation, etc., and does not explicitly distin-
guish between genes and their products.

We will consider five genes that form a small network of
interacting genes. Their product concentrations, represented
by ui with i=1, . . . ,5, evolve following the reaction-diffusion
equations

ui
˙ = di�

2ui + f i�a,h,�ui�� − �ui
ui + ���t�ui, �2�

where f i represents the regulatory transcription control of
gene i, and �i is the degradation rate. The last term represents
a multiplicative noise. � is a random variable that is assumed
uncorrelated and Gaussian distributed �null mean and vari-
ance unitary�. � represents the intensity of noise. For small
values of variables ui, the noise perturbation is also small but
it is implemented whenever ui�0. Although better schemes
for incorporating noise into the models can be considered
�e.g., �37��, the simpler approach adopted in this work is
justified as we are mostly concerned with qualitative fea-
tures.

Equation �2� governs the spatio-temporal evolution of the
small regulatory gene network represented in Fig. 3. This
network suffers from the influence of the surrounding tissues
through the biochemical agent concentration of a and h
�which are constant at a time�. The particular form of f i
depends on the regulatory inputs acting over gene i, and will
be discussed later.

In the hierarchically organized strategy, the regulatory
role of the genes belonging to a network could be organized
in different levels, for example positional level, regulatory
level, output level, etc. These levels interact to constitute a
specific network structure. In this framework, we can under-
stand a complete developmental program as a network of
interacting gene networks. In this spirit, the positional level
will be assigned to U1, the gene associated with concentra-
tion u1. U1 will decode the positional information derived
from the geometrical constraints �boundaries� through a and
h concentrations. The transcription of gene U1 will be acti-
vated when a reaches a threshold �1a and will be inhibited by
h and its own product at the thresholds �1h and �11, respec-
tively �the top panel of Fig. 1 shows the values of these
parameters�. Therefore, the expression of u1 is governed by
Eq. �3�,

f1�a,h,u1� = r1s+�a,�1a,n1a�s−�h,�1h,n1h�

� s−�a,�2a,n2a� . �3�

The expression of U1 activates in a concentration-
dependent manner the genes U2, U3, and U4 �associated
with the concentrations u2 , u3, and u4, respectively�, which
constitutes essentially a regulatory level of the hierarchy. U2,
U3, and U4 are activated at thresholds �21	�31	�41, re-
spectively, and each product inhibits the transcription of the

TABLE II. Parameter values of the gene network used to obtain
the pattern shown in Fig. 4. These values were also used in other
simulations whenever we have not stated otherwise �see also Table
III�.

Parameters Values Parameters Values

r1 6.25 r4 5.8�10−2

�1a 0.40 �41 0.40

�1h 0.05 �42 0.25

�11 0.20 �43 0.20

n1a 1.00 n41 4.00

n1h 3.00 n42 2.00

n11 5.00 n43 2.00

r21 8.06�10−2 r5 20/27

�21 1.05 �51 0.55

�23 0.35 �52 0.20

�24 0.45 �53 0.30

n21 4.00 �54 0.50

n23 2.00 n51 4.00

n24 2.00 n52 3.00

r3 0.21 n53 3.00

�31 0.60 n54 3.00

�32 0.10 PFL parameters

�34 0.10 r22 0.00

n31 4.00 �22 0.10

n32 2.00 n22 3.00

n34 2.00

FIG. 4. Density plot of concentrations of u2 �a�, u3 �b�, u4 �c�,
and u5 �d� after 400 steps in a semielliptic domain. The model
parameters used to compute these patterns are displayed in Table II.
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other genes, thus forming two negative feedback loops. So,
we can write

f2��ui�� = r22s
+�u2,�22,n22� + r21s

+�u1,�21,n21�

� s−�u3,�23,n23�s−�u4,�24,n24� , �4�

where �ui� represents the set of variables �u1 ,u2 ,u3 ,u4 ,u5�.
for r22	0, this gene is also self-activated. We have added a
self-activated term in Eq. �4� to study their effects over noise
control,

f3��ui�� = r3s+�u1,�31,n31�s−�u2,�32,n32�

� s−�u4,�34,n34� , �5�

f4��ui�� = r4s+�u1,�41,n41�s−�u2,�42,n42�

� s−�u3,�43,n43� . �6�

Thus the gradient associated with u1 generates discrete
spatial domains of regulatory factors that interact between
them and generate a more complicated spatial domain of
transcription of the third level of the hierarchy, the output
level. For simplicity, we consider also that this level is con-
stituted by only one gene. Its activation is promoted by u1
and it is down-regulated by the gene products of the former
level, u2 , u3, and u4,

f5��ui�� = r5s+�u1,�51,n51�s−�u2,�52,n52�

� s−�u3,�53,n53�s−�u4,�54,n54� . �7�

The positive and negative feedback loops of the model are
shown in Fig. 3. It is important to keep in mind that the
model was constructed to illustrate that gene networks, em-
bedded in feedback control principles, can induce or not
complex patterns depending on the boundary shape of the
problem. For the aim of our study, this small network is
enough. Of course, other kinds of networks can be designed
to model specific developmental systems.

III. RESULTS

A. The hierarchic network strategy

The boundary problem is completely specified by Eqs.
�1�, the initial condition �IC�, and the boundary condition

FIG. 5. Density plot of concentrations of u2 �a�, u3 �b�, u4 �c�,
and u5 �d� after 400 time steps. In this semicircular domain, no
localized structure were observed for any set of parameter values.

FIG. 6. Density plot of concentrations of u5 after 400 time steps
obtained for four different topologies with the network parameters
displayed in Table II. The original network was modified removing
the inhibitor loop U2�U3�U4�U2 �a�, the inhibitor loop
U4�U3�U2�U4 �b�, removing the inhibitor loop U2�U3�U4�U2

and adding an inhibitor edge from U5 to U1 �c� and adding an
inhibitor edge from U5 to U1.
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�BC�. In this sense, when a=1 over C and null over C�, the
two vertical boundary segments are connected by a periodic
boundary condition; while the inhibitor is h=1 over C� and
null over C, the two vertical boundary segments are con-
nected by a periodic boundary condition. Initially, both a and
h concentrations are null over all domains compatible with
BC. We integrate numerically Eqs. �1� for two different situ-
ations that differ in degradation parameter values. The simu-

lations run for a long period of time �5000 steps� after which
the resulting concentrations a and h are stationary. Then,
these concentrations will be used as input signals acting over
the network in several different conditions.

The aim of this paper is to study the effects of boundary
shape on the patterning in a developmental model. For this
purpose, we have elaborated a gene regulatory network
model with 52 parameters, which is studied by numerical

TABLE III. Parameter values of the gene network used to obtain the patterns shown in Fig. 9. The values
of parameters not shown in this table are the same as in Table II.

Figure 7�a� Figure 7�b� Figure 7�c� Figure 7�d�
Parameters Values Parameters Values Parameters Values Parameters Values

r21 6.85�10−2 r1 9.25 r1 7.50 r1 7.50�10−6

�21 0.99 �11 0.265 �1a 0.20 r21 8.46�10−2

n21 5.00 r21 12.09�10−2 r21 12.09�10−2 �21 0.95

r3 0.215 �21 0.85 �21 1.30 n21 5.00

�31 0.65 n21 5.00 n21 5.00 r3 0.27

r4 5.60�10−2 r3 32.02�10−2 r3 0.18 n31 2.00

r5 0.18 r4 6.24�10−2 r4 5.20�10−2 r4 9.75�10−2

�51 0.50 r5 35/216 r5 10/9 �41 0.45

�52 0.55 �51 0.50 �51 0.52 �42 0.20

�53 0.50 �52 0.40 �52 0.40 n41 2.00

�54 0.20 n51 2.00 �53 0.30 r5 8.54

n51 2.00 �54 0.25 �51 0.50

n51 3.00 �52 0.40

�53 0.20

�54 0.20

n51 2.00

FIG. 7. Density plot of concentrations of u5 after 400 time steps
obtained for crescent values of all Hill coefficients �nij =1, 2, 3, and
4�, while other parameter values are the same as Fig. 5.

FIG. 8. Density plot of concentrations of u5 after 400 time steps
obtained for inputs profile 1 ��a� and �b�� and inputs profile 2 ��c�
and �d�� with the network parameters displayed in Table III.
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simulations. Before massive computation, we need to estab-
lish some guidelines to set the parameters. The �i,j param-
eters represent the threshold for switching on or off the tran-
scription processes. They were setted in the interval
�0.0,1.2�. In particular, the thresholds corresponding to the
activation of U2, U3, and U4 by U1 are sorted in decreasing
order so as to form a sequence of activation; we set them to
�41=0.4, �31=0.6, and �21 ranges from 0.9 to 1.2. The dif-
fusion constants and degradation rates are initially the same
for all biochemical species �0.01 and 0.20, respectively�. Ini-
tially, the level of noise was null for all species. Tables I and
II display the parameter values used for most computations,
otherwise we will mention other parameter values.

The set of partial differential equations were discretized
using standard finite difference methods. The resulting large-

scale dynamical system was integrated in time using forward
Euler integration. We have performed simulations for differ-
ent sets of parameters subject to the above-mentioned restric-
tions. We have found that patterns are sensitive to the spatial
profile concentration of a and h and the parameters that regu-
late the activation and repression of U1 expression, �1a, �1h,
and �11. For any given profiles a and h, there are regions in
the parameter space where no patterns form, mainly due to
the fact that activator concentration a does not reach the
threshold �1a. An interplay of these parameters and both a
and h profiles controls the position and the coarse-grain as-
pect of the pattern shapes.

Figure 4 depicts the density of concentrations of u2 �A�,
u3 �B�, u4 �C�, and u5 �D� obtained using the input profile 1
�see Table I� after 400 time steps, when stationarity is
reached. We can see that the concentrations present comple-
mentary aspects. In general, the pattern of the output level is
particularly complex as it is under the effects of four regula-
tory fields. In contrast, the concentration corresponding to u2
is the simplest one because the regulatory field is almost
homogeneous in its expression domain. We have observed
through several simulations that these characteristics are
quite general.

The remarkable observation in our study is the fact that
geometrical constraints play a key role when surrounding
tissues secrete morphogenic substances. Localized patterns,
similar to those developed in the semielliptic domain, were
not formed in a semicircular domain. In the last case, we
were not able to tune the parameters in order to obtain pat-
terns different from semicircular stripes as shown in Fig. 5.
The reason for that is based on the fact that �despite the fact
that diffusively substances a and h are uniformly secreted by
the surrounding tissue� the curvature of the tissues is not
homogeneous in the elliptic case, but it is homogeneous in
the circular case. The two fronts of secreted substances are
able to generate a localized expression domain for U1 in the
nonhomogeneous curvature case. The striped patterns asso-
ciated with semicircular domains were also found to be ro-
bust, in the sense that no abrupt changes are implied when
the boundary shape changes progressively from a circle into
an ellipse. The position where the complex structures appear

FIG. 9. Density plot of concentrations of u5 after 400 steps
obtained in the same condition as Fig. 8 with the exception in the
boundary condition, which was perturbed.

FIG. 10. Density plot of u3 obtained, after 400 steps, when the dynamics of the gene network is perturbed with noise. The top panels
correspond to patterns obtained from the network without the positive feedback loop for increasing level of noise �sorted from left to right�.
The bottom panels correspond to patterns obtained from the network with the feedback loop for increasing level of noise �sorted from left
to right�. The levels of noise used were �=0.0 ��a� and �f��, �=0.05 ��b� and �g��, �=0.10 ��c� and �h��, �=0.15 ��d� and �i��, and �
=0.20 ��e� and �j��. For further information, see the text.
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in Fig. 4 corresponds to the maximal value of the surround-
ing tissue curvature. In contrast, for homogeneous curvature
the expression domains are not localized and that does not
depend on tuning adequately the network parameters. We
observed that the boundary shape dependence is not a prop-
erty of the particular network topology by running simula-
tions modifying the network topology. Figure 6 depicts the
pattern of expression level corresponding to u5 after 400
steps using the same parameters as in Fig. 4. In Fig. 6�a�, the
inhibitor loop U2�U3�U4�U2 was removed, while in Fig.
6�b� the inhibitor loop U4�U3�U2�U4 was removed. In Fig.
6�c�, the original network was modified removing the inhibi-
tor loop U2�U3�U4�U2 and adding an inhibitor edge from
U5 to U1 ��15=0.85, n15=3�, while in Fig. 6�d� we have only
added the inhibitor edge from U5 to U1. Despite the fact that
the four topologies present different patterns, they share the
boundary shape dependence property. This result suggests
that many gene networks may exhibit these properties when
exposed to signaling tissues with nonhomogeneous curvature
�which is normally the case in development�.

In our model, the gene expression rates involve Hill func-
tions whose coefficients ni,j range from 1 to 5. The case
ni,j 	1 reflects the fact that cis-regulatory systems have usu-
ally many binding sites for each trans-regulatory element.
These parameters can influence the shape patterns, in par-
ticular by controling the sharpness of the patterns. It is bio-
logically relevant to determine how high the Hill coefficients
must be to produce complex patterns. Figure 7 depicts the
pattern of expression level corresponding to u5 after 400
steps using the same values for all Hill coefficients in an
increasing manner �ni,j =1 �A�, ni,j =2 �B�, ni,j =3 �C�, and
ni,j =4 �D� for all ni,j�. For simplicity, all other parameter
values are the same as those used in Fig. 4. It is clear from
these results that low Hill coefficients are not able to gener-
ate complex patterns which became apparent for Hill coeffi-
cients greater than 3.

The same network can generate different patterns depend-
ing on the parameter values and the input profiles. Figure 8
illustrates four patterns of expression level corresponding to
u5 after 400 steps. The patterns displayed at the top �A and B

FIG. 11. Density plot corre-
sponding to u5 obtained in the
same situation as in Fig. 10.

FIG. 12. Gray-Scott model in
elliptic geometry: Density plot of
the v concentration for different
position of perturbation, increas-
ing from left to right, and for dif-
ferent values of parameter k,
which increases from top to bot-
tom �see details in text�.
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panels� have been obtained using profiles 1 �see Table I� and
two different sets of parameter values. In panel A, the system
reached stationarity, while panel B reached stationarity after
800 steps �see �38��. Stationary patterns displayed at the bot-
tom �C and D panels� have been obtained using profiles 2
�see Table I�. The parameter values are shown in Table III.
Often different sets of parameter values lead to the same
expression pattern, but the way to reach this pattern can dif-
fer from set to set. Movie 1 illustrates the evolution of the
network in two different conditions. The right panel of the
movie corresponds to the same condition as in Fig. 8�b�,
while in the left panel we changed slightly the value of the
parameter to r3=32.1�10−2. Both simulations correspond to
800 steps. We can see that the final patterns are almost the
same, but their temporal evolutions are quite different.

Small perturbations of boundary conditions affect the pat-
terning processes differently, depending on the network pa-
rameters. For example, Fig. 9 shows patterns generated by
the network in the same conditions as in Fig. 8, but with a
perturbation in the boundary tissues �both in C and C��. The
panels of Fig. 9 illustrate that the perturbation can affect a
little, as in panel A, or too much, destroying completely the
patterns, as in panels C and D. This result suggests that the
shape of the tissue strongly influences the formation of pat-
tern expression, and biochemical interactions are not a nec-
essary condition to explain alterations in the resulting gene
expression patterns. The influence could be through the geo-
metrical constraint imposed by the surrounding tissues.

In general, a genetic network that underlies the develop-
mental programs of living cells must withstand considerable
random perturbations. This occurs with fluctuation in, for
example, transcription, translation, and RNA and protein
degradation �39,40�. We have also studied by numerical

simulation the effects of the noise on the patterns in two
situations. For all the previous cases we have setted r22
=0.0, i.e., there is no autocatalytic feedback acting over u2. It
would be interesting to compare the effect of noise when this
positive feedback loop is present in the network. Figures 10
and 11 show the expression profiles of u3 and u5, respec-
tively, obtained for five different levels of noise �=0.00 �A
and F�, �=0.05 �B and G�, �=0.10 �C and H�, �=0.15 �D
and I�, and �=20 �E and J�. In both figures, the top panels
�A–E� correspond to the network without the above-
mentioned autocatalytic loop, while the bottom panels corre-
spond to the network with the loop. The network parameter
values used in both cases were the same as those used in Fig.
9�a�, except for parameters r21 and r22, which, in the case of
the network with the loop, change from 6.85�10−2 to 4.84
�10−2 and from zero to 4�10−2, respectively. We can see
that pattern structure remains almost unaltered for noise level
smaller than �10% for the network with the autocatalytic
loop. On the other hand, when this loop is absent �r22=0.0�,
the patterns seem to be more noise-sensitive. This example
illustrates that the particular network used is robust against a
considerably high level of noise. This robustness could arise
from the fact that there are two negative loops underlying the
regulatory interactions.

B. The self-organized strategy

In order to study the influence of boundary shape on a
self-organized system type, we have also implemented the
Gray-Scott model and a modified Fitz-Hugh–Nagumo sys-
tem on the semicircular and semielliptical domains.

The Gray-Scott model is a variant of the autocatalytic
Selkov model of glycolysis, which corresponds to the fol-
lowing two irreversible reactions:

FIG. 13. MFN model in ellip-
tic geometry: Density plot of the v
concentration for different posi-
tion of perturbation, increasing
from left to right, and for different
values of parameter k, which in-
creases from top to bottom �see
details in text�.
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U + 2V → 3V ,

V → P ,

where V catalyzes its own reaction with U, and P is an inert
product. The reactor is coupled to a reservoir in which the
concentrations of U and V are maintained constant. This cou-
pling also results in both chemicals being removed from the
reactor in a concentration-dependent fashion �41�. A variety
of spatio-temporal patterns were derived in response to
finite-amplitude perturbation �42�. We consider that u and v

are coupled to the activator field a and to inhibitor h as
follows:

u̇ = Du�
2u − uv2 + F�1 − u� + ruf�a,h� ,

v̇ = Dv�
2v + uv2 − �F + k�v + rvg�a,h� . �8�

We also present spatio-temporal patterns derived from a
system with lateral inhibition previously study in �43�,

u̇ = Du�
2u − 
1u�u − 0.05��u − 1� − v + ruf�a,h� ,

v̇ = Dv�
2v + 
2�u − v� + rvg�a,h� . �9�

FIG. 14. Gray-Scott model in circular geometry: Density plot of
the v concentration for different positions of perturbation �increas-
ing from left to right� and for different values of parameter k �in-
creasing from top to bottom�.

FIG. 15. MFN model in circular geometry: Density plot of the v
concentration for different positions of perturbation �increasing
from left to right� and for different values of parameter k �increas-
ing from top to bottom�.
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Both Gray-Scott and the modified Fitz-Hugh–Nagumo
�MFN� system f and g are defined by

f�a,h� = s+�a,�u,a,nu,a�s−�h,�u,h,nu,h� ,

g�a,h� = s+�a,�v,a,nv,a�s−�h,�v,h,nv,h� .

We study numerically the response to different positioned
perturbations in both systems which involve both geometries
mentioned above. The initial condition corresponds to a
trivial state �u=1 and v=0 in the Gray-Scott, and u=0 and
v=0 in the MFN model�. In both cases, a 16 by 16 mesh
point area located over the semimajor �horizontal� axis was
perturbed to u=0.50 and v=0.25. The systems suffer from
the influence of a and h fields determined by the profile 1
�see Table I�. Figures 12 and 13 show the patterns obtained
from the Gray-Scott model and MFN model, respectively, on
the elliptic geometry �for system response on the circular
geometry, see Figs. 14 and 15�. The horizontal position of
perturbations was centered at 38.3, 42.3, 46.3, 50.3, and
54.3. The Gray-Scott parameter k ranges from 0.060 to
0.066, while the MFN parameter 
2 ranges from 0.0425 to
0.0725; both are uniformly spaced. Other adopted parameters
are shown in Table IV. As we can see, for several values of
the parameter k or 
2, the final patterns upon 2000 time steps
depend strongly on the position where the perturbation oc-
curs, while the geometry of the domain, either elliptical or
circular, seems to have little influence in the case of the
Gray-Scott model. However, in the MFN model, the patterns
seem to be more sensitive to the shape of the surrounding
tissue than in the Gray-Scott model, but less than for our
model. It should be mentioned that, in contrast to the results
discussed in the previous section, these patterns are not
stable in the sense that they continue growing until all the
domain is filled up.

IV. DISCUSSION

Early development of multicellular organisms is marked
by a rapid increase in their cell numbers, accompanied by
morphogenetic processes leading to the gradual formation of

organs of characteristic shapes. During morphogenesis,
through differentiation under strict genetic control, cells be-
come more and more specialized. Further, genetic mecha-
nisms such as morphogenesis also require generic physical
principles, such as diffusion, spreading, differential adhesion,
chemotaxis, etc. As a consequence, development relies on an
intricate interplay of generic and genetic mechanisms. In this
paper, we have addressed the issue of how chemical signal-
ing derived from surrounding tissues can drive patterning
processes. Our results, derived by computer simulation, sug-
gest that the shape of the source �tissue� and other geometri-
cal features strongly influence the formation of complex
structures. In particular, we found that nonhomogeneous cur-
vature of signaling tissues can generate complex patterns
when acting on a gene network, while the same network
embedded in a geometry with homogeneous curvature
�boxes and circles� does not form localized structures. This
result suggests an important consequence for development:
let us consider that the shape of an organizer �tissue I or II in
our case� is controlled by a gene network A, and the genic
response to the organization field is controlled by a network
B �the network shown in Fig. 3 in our case�, which is not
regulated by genes of network A. Any mutation in A that
alters the shape of the organizer and consequently the orga-
nization field will affect the development of the induced
structure or organ. Thus, we can conclude that biochemical
interaction is not a necessary condition to explain alteration
in the overall induced output; the interaction could be under-
laid by a geometrical constraint imposed by the organizer.
This conclusion is in agreement with the basis of epigenetic
mechanisms for development proposed in previous studies
�44,45�.

In contrast to this hierarchic-type system, the self-
organized systems examined here �Gray-Scott and MFN
models� seem to be more insensitive to the gradients derived
from surrounding tissues. However, this result does not seem
to be general for all circumstances. In particular, Ref. �25�
reports a Turing-type model in the morphodynamic perspec-
tive, which is sensitive to the geometry of the border of the
studied domain.

Developmental mechanisms of patterning must be robust
in order to ensure the functionality of organs, tissues, or coat
patterns, under a wide range of environmental constraints
and requirements. In organogenesis, signals produced at the
wrong place or time can lead to an inappropriate develop-
mental process, leading to a loss of the associated functions
and/or to death. Thus, the robustness of patterns to noise
becomes critical for the performance of the associated organ.
Here, we have studied the robustness of patterns considering
either the presence or absence of a positive feedback loop in
the regulatory network. The two negative feedback loops
presented in both cases were able to guarantee the stability of
the pattern structure against a considerably high level of
noise. However, the patterns driven by the first network seem
to present higher robustness to noise than those generated by
the second one. This example shows, as in many homeotic
genes, that the positive feedback loop helps to foster the
continuity of their expression, thus contributing to the stabi-
lization of the patterns.

TABLE IV. Parameter values for the Gray-Scott and MFN
models.

Gray-Scott Fitz-Hugh–Nagumo

Parameters Values Parameters Values

F 0.04 
1 4.50

ru 0.002 ru 0.305

rv 0.004 rv 0.00

Du 0.0336 Du 0.10

Dv 0.0168 Dv 0.405

�ua�=�uh� 0.50 �ua�=�uh� 0.08

�va=�vh� 0.50 �va=�vh�
nua�=nuh� 1.0 nua�=nuh� 5.0

nva�=nvh� 1.0 nva�=nvh�
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Although we have used a particular network topology
with several mutually inhibiting factors, there are many other
possibilities for the topology that could produce interesting
patterns. Each topology can respond in a different way to the
intrinsic noise of the patterning process. The particular case
examined here was enough to conclude that the hierarchic-
type mechanism, as the regulatory networks, can create
complex biological shapes out of a simple structure. This
mechanism could be enriched by incorporating geometri-

cal constraints as key ingredients of morphogenesis pro-
cesses.
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